allesfitter.GUI()
Input:
Returns:
Outputs:
allesfitter.show_initial_guess(datadir, do_logprint=True, do_plot=True, return_figs=False)
Input:
The directory path, for example 'Users/JohnWayne/Science/allesfit'
If True, it will save a logfile.
If True, it will make and save the plots.
If True, it will it will return a list of the figure objects.
Returns:
Outputs:
allesfitter.mcmc_fit(datadir)
Input:
The directory path, for example 'Users/JohnWayne/Science/allesfit'
Returns:
Outputs:
allesfitter.mcmc_output(datadir)
Input:
The directory path, for example 'Users/JohnWayne/Science/allesfit'
Returns:
Outputs:
allesfitter.ns_fit(datadir)
Input:
The directory path, for example 'Users/JohnWayne/Science/allesfit'
Returns:
Outputs:
allesfitter.ns_output(datadir)
Input:
The directory path, for example 'Users/JohnWayne/Science/allesfit'
Returns:
Outputs:
allesfitter.ns_plot_bayes_factors(datadirs, labels=None, return_logZ=False)
Input:
A list of all the directory paths to be compared, for example ['allesfit_circular', 'allesfit_eccentric']
If given, this will set the plot labels accordingly. Otherwise, the datadir names will be used.
If True, it will it will return a list of the Bayesian evidences, log Z, of all model fits
Returns:
Outputs:
CLASS allesfitter.allesclass(datadir)
Inputs:
The directory path, for example 'Users/JohnWayne/Science/allesfit'
Attributes:
A dictionary with the full data set that was loaded.
A dictionary with the data set that was used for the fit. This means, if fast_fit was used and out-of-transit data was neglected, it will not show up here.
A dictionary of all settings.
A 2d numpy array with all initial guess parameters
A dictionary with all initial guess parameters
A dictionary with the stellar parameters (if any were given)
A dictionary with all external parameters (if any were given)
A 2d numpy array with all posterior parameters
A 1d numpy array with all posterior parameters at the highest maximum likelihood step in the entire sampling
A dictionary with all posterior parameters
A dictionary with the medians of all posterior parameters
A dictionary with the lower errors of all posterior parameters
A dictionary with the upper errors of all posterior parameters
A dictionary with all posterior parameters at the highest maximum likelihood step in the entire sampling
A dictionary of all the derived parameters
Methods:
from allesfitter.transit_search.injection_recovery_test import inject_and_tls_search
inject_and_tls_search(time, flux, flux_err,
periods, rplanets, logfname,
SNR_threshold=5.,
known_transits=None,
R_star=0.13, R_star_min=1., R_star_max=3.5,
M_star=0.1, M_star_min=1., M_star_max=1.,
show_plot=False, save_plot=False)
Summary:
Input:
time stamps of observations
normalized flux
error of normalized flux
a period or list of periods for injections
a planet radius or list of planet radii for injections
file path and name for the log file
the SNR threshold at which to stop the TLS search
if dict and one transit is already known:
known_transits = {'period':[1.3], 'duration':[2.1], 'epoch':[245800.0]}
if dict and multiple transits are already known:
known_transits = {'period':[1.3, 21.0], 'duration':[2.1, 4.1], 'epoch':[245800.0, 245801.0]}
'period' is the period of the transit
'duration' must be the total duration, i.e. from first ingress point to last egrees point, in days
'epoch' is the epoch of the transit
radius of the star (e.g. median)
default 1 R_sun (from TLS)
minimum radius of the star (e.g. 1st percentile)
default 0.13 R_sun (from TLS)
maximum radius of the star (e.g. 99th percentile)
default 3.5 R_sun (from TLS)
mass of the star (e.g. median)
default 1. M_sun (from TLS)
minimum mass of the star (e.g. 1st percentile)
default 0.1 M_sun (from TLS)
maximum mass of the star (e.g. 99th percentile)
default 1. M_sun (from TLS)
show a plot in the terminal or not
save a plot or not
Returns:
Outputs: